Typical synthetic hydrogels are brittle, barely stretchable, and adhere weakly to other surfaces.

“They’re often used as degradable biomaterials at the current stage,” Zhao says. “If you want to make an electronic device out of hydrogels, you need to think of long-term stability of the hydrogels and interfaces.”

To get around these challenges, his team came up with a design strategy for robust hydrogels, mixing water with a small amount of selected biopolymers to create soft, stretchy materials with a stiffness of 10 to 100 kilopascals — about the range of human soft tissues. The researchers also devised a method to strongly bond the hydrogel to various nonporous surfaces.

In the new study, the researchers applied their techniques to demonstrate several uses for the hydrogel, including encapsulating a titanium wire to form a transparent, stretchable conductor. In experiments, they stretched the encapsulated wire multiple times and found it maintained constant electrical conductivity.

Zhao also created an array of LED lights embedded in a sheet of hydrogel. When attached to different regions of the body, the array continued working, even when stretched across highly deformable areas such as the knee and elbow.

A versatile matrix

Finally, the group embedded various electronic components within a sheet of hydrogel to create a “smart wound dressing,” comprising regularly spaced temperature sensors and tiny drug reservoirs. The researchers also created pathways for drugs to flow through the hydrogel, by either inserting patterned tubes or drilling tiny holes through the matrix. They placed the dressing over various regions of the body and found that even when highly stretched the dressing continued to monitor skin temperature and release drugs according to the sensor readings.

Yuk says an immediate application of the technology may be as a stretchable, on-demand treatment for burns or other skin conditions.

“It’s a very versatile matrix,” Yuk says. “The unique capability here is, when a sensor senses something different, like an abnormal increase in temperature, the device can on demand release drugs to that specific location and select a specific drug from one of the reservoirs, which can diffuse in the hydrogel matrix for sustained release over time.”

Delving deeper, Zhao envisions hydrogel to be an ideal, biocompatible vehicle for delivering electronics inside the body. He is currently exploring hydrogel’s potential as a carrier for glucose sensors as well as neural probes. Conventional glucose sensors, implanted in the body, typically spark a foreign-body response from the immune system, which covers the sensors with dense fibers, requiring the sensors to be replaced often. While various hydrogels have been used to coat glucose sensors and prevent such a reaction, the hydrogels are brittle and can detach easily with motion.  Zhao says the hydrogel-sensor system his group is developing would likely be robust and effective over long periods. He says a similar case might be made for neural probes.

“The brain is a bowl of Jell-O,” Zhao says. “Currently, researchers are trying different soft materials to achieve long-term biocompatibility of neural devices. With collaborators, we are proposing to use robust hydrogel as an ideal material for neural devices, because the hydrogel can be designed to possess similar mechanical and physiological properties as the brain.”

This research was funded, in part, by the Office of Naval Research, the MIT Institute for Soldier Nanotechnologies, and the National Science Foundation.

Page 2 of 2

Share on:

Share on LinkedIn Share on X Share on Facebook Share with email

Suggested Items

ZESTRON Academy Launches 2024 Advanced Packaging & Power Electronics Webinar Series

05/01/2024 | ZESTRON
ZESTRON, the leading global provider of high-precision cleaning products, services, and training solutions in the electronics manufacturing and semiconductor industries, proudly announces the launch of its highly anticipated webinar series on Advanced Packaging & Power Electronics, a webinar series on the latest innovations, cleaning, and corrosion challenges.

NextFlex Convenes the Hybrid Electronics Community at Binghamton University

05/01/2024 | NextFlex
Binghamton University hosted the NextFlex hybrid electronics community on April 18 for a day of expert presentations, breakout sessions on technology and manufacturing topics, and networking. 

HQ NextPCB of HQ Electronics Debut on the International Stage for Electronics Manufacture at IPC APEX 2024

05/01/2024 | PRNewswire
HQ NextPCB of HQ Electronics, a leading Chinese-based multilayer PCB manufacturer and assembly house showcased its industrial prowess on the international stage for the first time at the IPC APEX Expo 2024.

GPV’s Q1 2024 Interim Financial Report Shows Strong Navigation in Uncertain Times

05/01/2024 | GPV
Danish-based GPV recorded an expected drop in sales to DKK 2.3 billion for the first quarter of 2024. The decline also affected the operating profit, which was DKK 155 million compared to DKK 179 million in the same quarter last year, although the EBITDA margin was maintained. In general, demand has been softer in 2024, but GPV continues to invest for the long-term and expects the trend to turn in the second half of 2024.

All-Inclusive: PRIDE Industries Helps Employees With Disabilities to Succeed

05/01/2024 | Sandy Gentry, IPC
PRIDE Industries is the leading employer of people with disabilities and those with other barriers to employment in the United States, including veterans and former foster youth. The company offers job training, placement, on-the-job coaching, and skills development for independent living. It has held IPC membership since 2000. Read more about this unique business and its connection to the electronics manufacturing industry.
Copyright © 2024 I-Connect007 | IPC Publishing Group Inc. All rights reserved. Log in