Component Selection for Easier Design and Manufacture of Electronics


Reading time ( words)

“Simplify, simplify, simplify.”

                      —Henry David Thoreau 

Thoreau penned his simple lifestyle mantra more than 150 years ago and it still as valid today as it was when he first captured and recorded his thoughts on paper. He was not the first to extoll the importance of simplicity, but he said it in a memorable way.

Achieving simplicity has been deemed a worthy objective by many philosophers over centuries, and people often profess to seek simplicity in their lives. In the world of high tech, simplicity is arguably one of the foundational objectives of most of the technologies that surround us today. Certainly this is true in terms of how product designers are trying to create interfaces that allow even the most nontechnical users to get what they need from electronic products with a minimum of hassle.

However, that interface simplicity is undergirded by a massively complex electromechanical substructure of circuits, sensors and components. Pop open any high-end electronic device and you will be met by an impressive mass of densely packed components and circuits. Presently, those components are available in a wide array of formats, with a number of different lead shapes and forms along with the device’s mechanical outline. Presently, there are J-leads, I-leads, gull-wing leads, posts, balls and no leads at all. Mechanical outlines are generally square and rectangular, but the bodies can have a wide range of dimensions in X, Y and Z. While area array technology has helped to make things smaller, it has also upped the complexity factor from a design perspective by mixing grids and land shapes and sizes.

Why so many options? It is because there is not, nor has there ever been, a truly coherent approach to the process of selecting package structures for ICs or any other components for that matter. Yes, a roadmap for electronic component lead pitch was introduced with the advent of SMT, and that roadmap said that every next-generation lead pitch should be 80% of the size of the previous generation lead pitch.

Read the full article here.


Editor's Note: This article originally appeared in the November 2014 issue of The PCB Design Magazine.

Share

Print


Suggested Items

EMA: Cadence Moves Simulation Further Up in the Design Cycle

03/15/2019 | Andy Shaughnessy, Design007 Magazine
Cadence Design Systems recently integrated more of its Sigrity capabilities into the front end of its PCB design tools. During DesignCon, Chris Banton of EMA Design Automation spoke with me about how this drive for “model-less analysis” benefits the PCB designer who can now access signal and power integrity, DFM, and electrical rule checking functionality early in the design process and have fewer issues later.

Words of Advice: What are Your Biggest Design Challenges?

03/11/2019 | Andy Shaughnessy, Design007 Magazine
In a recent survey, we asked the following question: What are your biggest design challenges? Here are just a few of the answers, edited slightly for clarity.

Todd Westerhoff Discusses His New Position and Much More

03/07/2019 | Andy Shaughnessy, Design007 Magazine
At DesignCon, I met with our old friend Todd Westerhoff, a veteran signal integrity engineer. Todd joined Mentor, a Siemens Business, since we last spoke. We discussed his new job responsibilities, his drive to get more designers and engineers to use SI tools, and the increasing value of cost-reduced design techniques versus overdesigning PCBs.



Copyright © 2019 I-Connect007. All rights reserved.